Discrete extension operators for mixed finite element spaces on locally refined meshes
نویسندگان
چکیده
منابع مشابه
Discrete extension operators for mixed finite element spaces on locally refined meshes
The existence of uniformly bounded discrete extension operators is established for conforming Raviart-Thomas and Nédelec discretisations of H(div) and H(curl) on locally refined partitions of a polyhedral domain into tetrahedra.
متن کاملMultigrid for Locally Refined Meshes
A two-level method for the solution of nite element schemes on locally reened meshes is introduced. The upper bound on the condition number implies, in some cases, mesh-independent convergence, as is veriied numerically for a diiusion problem with discontinuous coeecients. The discontinuity curves are not necessarily aligned with the coarse mesh; indeed, numerical applications with ten levels o...
متن کاملA Multilevel Approach for Obtaining Locally Optimal Finite Element Meshes
In this paper we consider the adaptive finite element solution of a general class of variational problems using a combination of node insertion, node movement and edge swapping. The adaptive strategy that is proposed is based upon the construction of a hierarchy of locally optimal meshes starting with a coarse grid for which the location and connectivity of the nodes is optimized. This grid is ...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملLocally Optimal Unstructured Finite Element Meshes in Three Dimensions
This paper investigates the adaptive finite element solution of a general class of variational problems in three dimensions using a combination of node movement, edge swapping, face swapping and node insertion. The adaptive strategy proposed is a generalization of previous work in two dimensions and is based upon the construction of a hierarchy of locally optimal meshes. Results presented, both...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2016
ISSN: 0025-5718,1088-6842
DOI: 10.1090/mcom/3074